Skip to contents

This vignette describes the mathematical framework and computational implementation of the JointODE model, which jointly models longitudinal biomarker trajectories and survival outcomes through a coupled ordinary differential equation (ODE) system.

Model Framework

Longitudinal Sub-Model

The observed biomarker measurements are modeled as: V_{ij}=m_i(T_{ij})+b_i+\varepsilon_{ij},\quad i=1,\ldots,n,\quad j=1,\ldots,n_i

where:

  • V_{ij}: Observed biomarker value for subject i at time T_{ij}
  • m_i(t): True underlying biomarker trajectory
  • b_i\sim\mathcal{N}(0,\sigma_{b}^{2}): Subject-specific random intercept
  • \varepsilon_{ij}\sim\mathcal{N}(0,\sigma_{e}^{2}): Measurement error

The biomarker trajectory evolution is characterized by the following second-order differential equation:

\ddot{m}_i(t) = f\big(m_i(t), \dot{m}_i(t), \mathbf{X}_i(t), t\big)

where f: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^p \times \mathbb{R}^+ \to \mathbb{R} is a smooth function modeling the biomarker acceleration as a function of its current value m_i(t), velocity \dot{m}_i(t), time-varying covariates \mathbf{X}_i(t) \in \mathbb{R}^p, and time t.

Survival Sub-Model

The hazard function incorporates biomarker dynamics:

\lambda_i(t) = \lambda_{0}(t)\exp\left[\mathbf{W}_i^{\top}\boldsymbol{\phi}+\mathbf{m}_i(t)^{\top}\boldsymbol{\alpha}+b_{i}\right]

where:

  • \lambda_{0}(t): Baseline hazard (e.g., Weibull, piecewise constant)
  • \mathbf{m}_i(t)=\left(m_i(t), \dot{m}_i(t), \ddot{m}_i(t)\right)^{\top}: Biomarker value and derivatives
  • \boldsymbol{\alpha}=(\alpha_0, \alpha_1, \alpha_2)^{\top}: Association parameters for value, velocity, and acceleration
  • \mathbf{W}_i: Baseline covariates with coefficients \boldsymbol{\phi}
  • b_i: Subject-specific random intercept

ODE System

The state vector \mathbf{s}_i(t) = (\Lambda_i(t), m_i(t), \dot{m}_i(t))^{\top} evolves according to:

\frac{d\mathbf{s}_i}{dt} = \begin{pmatrix} \lambda_i(t|b_i) \\ \dot{m}_i(t) \\ g(\boldsymbol{\beta}^{\top}\mathbf{Z}_i(t)) \end{pmatrix}

with initial conditions \mathbf{s}_i(0) = (0, m_{i0}, \dot{m}_{i0})^{\top}.

Statistical Inference

Model Components

Hazard Function: \lambda_i(t|b_i) = \exp\left[\boldsymbol{\eta}^{\top} \mathbf{B}^{(\lambda)}(t) + \mathbf{W}_i^{\top}\boldsymbol{\phi} + \mathbf{m}_i(t)^{\top}\boldsymbol{\alpha} + b_{i}\right]

where \mathbf{B}^{(\lambda)}(t) is the B-spline basis for baseline hazard, and \boldsymbol{\eta} are the corresponding coefficients.

Acceleration Function: g(u) = \boldsymbol{\gamma}^{\top} \mathbf{B}^{(g)}(u), \quad u = \boldsymbol{\beta}^{\top}\mathbf{Z}_i(t)

where \mathbf{B}^{(g)}(u) is the B-spline basis for acceleration, \boldsymbol{\gamma} are the basis coefficients, and \boldsymbol{\beta} are the single-index coefficients (constrained: \|\boldsymbol{\beta}\| = 1).

Likelihood

The joint likelihood for subject i integrates over the random effect:

L_i(\boldsymbol{\psi}) = \int f(\mathbf{V}_i | b_i) \cdot f(T_i, \delta_i | b_i) \cdot f(b_i) \, db_i

where \boldsymbol{\psi} = (\boldsymbol{\theta}, \boldsymbol{\beta}), with \boldsymbol{\theta} = (\boldsymbol{\eta}, \boldsymbol{\phi}, \boldsymbol{\alpha}, \boldsymbol{\gamma}, \sigma_e^2, \sigma_b^2).

Likelihood Components:

  1. Longitudinal: f(\mathbf{V}_i | b_i) = \prod_{j=1}^{n_i} \mathcal{N}(V_{ij}; m_i(T_{ij}) + b_i, \sigma_e^2)
  2. Survival: f(T_i, \delta_i | b_i) = [\lambda_i(T_i|b_i)]^{\delta_i} \exp[-\Lambda_i(T_i|b_i)]
  3. Random Effect: f(b_i) \sim \mathcal{N}(0, \sigma_b^2)

EM Algorithm

We use an Expectation-Maximization (EM) algorithm for parameter estimation.

E-Step: Posterior Computation

For each subject i, compute the posterior distribution of b_i given observed data \mathcal{O}_i.

Key simplification: The hazard and cumulative hazard factor as:

  • \lambda_i(t|b_i) = e^{b_i} \lambda_i(t|0)
  • \Lambda_i(t|b_i) = e^{b_i} \Lambda_i(t|0)

Implementation:

  1. Solve baseline ODE with b_i = 0 to obtain m_i(t), \lambda_i(t|0), \Lambda_i(T_i|0)
  2. Find posterior mode \tilde{b}_i by maximizing: \ell_i(b) = b\left[\frac{S_i}{\sigma_e^2} + \delta_i\right] - \frac{b^2}{2}\left[\frac{n_i}{\sigma_e^2} + \frac{1}{\sigma_b^2}\right] - e^b\Lambda_i(T_i|0) where S_i = \sum_j(V_{ij} - m_i(T_{ij}))
  3. Compute posterior moments via adaptive Gauss-Hermite quadrature:
    • Mean: \hat{b}_i = E[b_i|\mathcal{O}_i]
    • Variance: \hat{v}_i = \text{Var}[b_i|\mathcal{O}_i]
    • Transform: E[e^{b_i}|\mathcal{O}_i] for survival updates

M-Step: Parameter Updates

Maximize the expected complete-data log-likelihood:

Q(\boldsymbol{\psi}) = Q_{\text{long}} + Q_{\text{surv}} + Q_{\text{RE}}

where:

  • Q_{\text{long}} = -\frac{1}{2\sigma_e^2}\sum_{i,j} [(V_{ij} - m_i(T_{ij}) - \hat{b}_i)^2 + \hat{v}_i] - \frac{N}{2}\log(2\pi\sigma_e^2)
  • Q_{\text{surv}} = \sum_i [\delta_i(\log\lambda_i(T_i|0) + \hat{b}_i) - E[e^{b_i}|\mathcal{O}_i]\Lambda_i(T_i|0)]
  • Q_{\text{RE}} = -\frac{1}{2\sigma_b^2}\sum_i (\hat{b}_i^2 + \hat{v}_i) - \frac{n}{2}\log(2\pi\sigma_b^2)

Optimization Strategy:

  1. Update \boldsymbol{\beta}:

\hat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta}:\|\boldsymbol{\beta}\|=1} Q(\boldsymbol{\beta};\widehat{\boldsymbol{\theta}})

  1. Update \boldsymbol{\theta}:

\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta};\widehat{\boldsymbol{\psi}}, \hat{\boldsymbol{\gamma}})

  1. Update \boldsymbol{\sigma}: \sigma_e^2 = \frac{1}{N}\sum_{i,j}[(V_{ij} - m_i(T_{ij}) - \hat{b}_i)^2 + \hat{v}_i],\quad\sigma_b^2 = \frac{1}{n}\sum_i(\hat{b}_i^2 + \hat{v}_i)

Computational Details

Overview of Gradient Computation

The M-step in the EM algorithm requires maximization of the expected complete-data log-likelihood Q(\boldsymbol{\psi}) where \boldsymbol{\psi} = (\boldsymbol{\theta}, \boldsymbol{\beta}). The gradient is:

\nabla_{\boldsymbol{\psi}} Q = \sum_{j=1}^{n_i} \frac{r_{ij}}{\sigma_e^2} \frac{\partial m_i(T_{ij})}{\partial \boldsymbol{\psi}} - E[e^{b_i}|\mathcal{O}_i] \frac{\partial \Lambda_i(T_i)}{\partial \boldsymbol{\psi}}

where r_{ij} = V_{ij} - m_i(T_{ij}) - \hat{b}_i is the residual.

The key computational challenge is obtaining the state sensitivities: - \frac{\partial m_i(T_{ij})}{\partial \boldsymbol{\psi}} at each observation time T_{ij} - \frac{\partial \Lambda_i(T_i)}{\partial \boldsymbol{\psi}} at the event time T_i

Two approaches are available: the forward sensitivity method and the adjoint method.

Sensitivity Analysis via Forward Method

Gradient Computation

Parameter Vector \boldsymbol{\theta}

The gradient components with respect to \boldsymbol{\theta} = (\boldsymbol{\eta}, \boldsymbol{\phi}, \boldsymbol{\alpha}, \boldsymbol{\gamma}) decompose as follows:

Baseline hazard coefficients (\boldsymbol{\eta}): \nabla_{\boldsymbol{\eta}} Q = \sum_{i=1}^{n} \left[\delta_i \mathbf{B}^{(\lambda)}(T_i) - E[e^{b_i}|\mathcal{O}_i] \frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\eta}}\right]

Baseline covariate effects (\boldsymbol{\phi}): \nabla_{\boldsymbol{\phi}} Q = \sum_{i=1}^{n} \left[\delta_i - E[e^{b_i}|\mathcal{O}_i] \cdot \Lambda_i(T_i|0)\right] \mathbf{W}_i

Association parameters (\boldsymbol{\alpha}): \nabla_{\boldsymbol{\alpha}} Q = \sum_{i=1}^{n} \left[\delta_i \mathbf{m}_i(T_i) - E[e^{b_i}|\mathcal{O}_i] \frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\alpha}}\right]

Acceleration spline coefficients (\boldsymbol{\gamma}): \nabla_{\boldsymbol{\gamma}} Q = \sum_{i=1}^{n}\sum_{j=1}^{n_i} \frac{r_{ij}}{\sigma_e^2} \frac{\partial m_i(T_{ij})}{\partial \boldsymbol{\gamma}} + \sum_{i=1}^{n} \left[\delta_i \boldsymbol{\alpha}^{\top} \frac{\partial \mathbf{m}_i(T_i)}{\partial \boldsymbol{\gamma}} - E[e^{b_i}|\mathcal{O}_i] \frac{\partial \Lambda_i(T_i|0)}{\partial \boldsymbol{\gamma}}\right]

where r_{ij} = V_{ij} - m_i(T_{ij}) - \hat{b}_i denotes the residual from the longitudinal model.

Single-Index Coefficients \boldsymbol{\beta}

The gradient with respect to the constrained single-index coefficients (\|\boldsymbol{\beta}\|=1) is:

\nabla_{\boldsymbol{\beta}} Q = \sum_{i=1}^{n}\sum_{j=1}^{n_i} \frac{r_{ij}}{\sigma_e^2} \frac{\partial m_i(T_{ij})}{\partial \boldsymbol{\beta}} + \sum_{i=1}^{n} \left[\delta_i \boldsymbol{\alpha}^{\top} \frac{\partial \mathbf{m}_i(T_i)}{\partial \boldsymbol{\beta}} - E[e^{b_i}|\mathcal{O}_i] \frac{\partial \Lambda_i(T_i|0)}{\partial \boldsymbol{\beta}}\right]

Sensitivity Propagation

Cumulative Hazard Sensitivities

The cumulative hazard function \Lambda_i(T_i|0) depends on parameters through the instantaneous hazard. For parameters affecting the hazard directly, the sensitivities are computed as:

\frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\eta}}=\int_{0}^{T_i}\lambda_i(t|0)\mathbf{B}^{(\lambda)}(t)\,\mathrm{d}t,\quad \frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\alpha}}=\int_{0}^{T_i}\lambda_i(t|0)\mathbf{m}_i(t)\,\mathrm{d}t,\quad \frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\phi}}=\int_{0}^{T_i}\lambda_i(t|0)\mathbf{W}_i\,\mathrm{d}t

For parameters affecting the trajectory m_i(t), the chain rule yields:

\frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\gamma}}=\int_{0}^{T_i}\lambda_i(t|0)\boldsymbol{\alpha}^{\top}\frac{\partial\mathbf{m}_i(t)}{\partial\boldsymbol{\gamma}}\,\mathrm{d}t,\quad\frac{\partial\Lambda_i(T_i|0)}{\partial\boldsymbol{\beta}}=\int_{0}^{T_i}\lambda_i(t|0)\boldsymbol{\alpha}^{\top}\frac{\partial\mathbf{m}_i(t)}{\partial\boldsymbol{\beta}}\,\mathrm{d}t

Trajectory Sensitivities

The biomarker trajectory sensitivities satisfy recursive integral relationships that arise naturally from the hierarchical structure of the second-order differential equation system. These sensitivities must be computed through the forward propagation method due to the coupling between trajectory dynamics and parameter dependencies.

Single-index coefficients (\boldsymbol{\beta}):

The trajectory sensitivities evolve according to:

\frac{\partial m_i(t)}{\partial \boldsymbol{\beta}} = \int_{0}^{t} \frac{\partial\dot{m}_i(s)}{\partial \boldsymbol{\beta}} \,\mathrm{d}s,\quad \frac{\partial\dot{m}_i(t)}{\partial \boldsymbol{\beta}} = \int_{0}^{t} \frac{\partial \ddot{m}_i(s)}{\partial \boldsymbol{\beta}} \,\mathrm{d}s

where the acceleration sensitivity is given by:

\frac{\partial \ddot{m}_i(t)}{\partial \boldsymbol{\beta}} = \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) \frac{\partial u}{\partial\boldsymbol{\beta}}

Here, u = \boldsymbol{\beta}^{\top}\mathbf{Z}_i(t) denotes the single-index value with \mathbf{Z}_i(t) = [m_i(t), \dot{m}_i(t), \mathbf{X}_i^{\top}(t), t]^{\top} being the feature vector. The derivative \mathbf{B}'_g(u) = \frac{d\mathbf{B}_g(u)}{du} represents the derivative of the B-spline basis. The sensitivity of the index is:

\frac{\partial u}{\partial\boldsymbol{\beta}} = \mathbf{Z}_i(t) + \boldsymbol{\beta}^{\top} \frac{\partial \mathbf{Z}_i(t)}{\partial\boldsymbol{\beta}}

where \frac{\partial \mathbf{Z}_i(t)}{\partial\boldsymbol{\beta}} = \begin{bmatrix} \frac{\partial m_i(t)}{\partial \boldsymbol{\beta}} \\ \frac{\partial \dot{m}_i(t)}{\partial \boldsymbol{\beta}} \\ \mathbf{0} \\ 0 \end{bmatrix} since the covariates \mathbf{X}_i(t) and time t do not depend on \boldsymbol{\beta}.

Acceleration spline coefficients (\boldsymbol{\gamma}):

Similarly, the sensitivities with respect to \boldsymbol{\gamma} follow:

\frac{\partial m_i(t)}{\partial \boldsymbol{\gamma}} = \int_{0}^{t} \frac{\partial\dot{m}_i(s)}{\partial \boldsymbol{\gamma}} \,\mathrm{d}s,\quad \frac{\partial\dot{m}_i(t)}{\partial \boldsymbol{\gamma}} = \int_{0}^{t} \frac{\partial \ddot{m}_i(s)}{\partial \boldsymbol{\gamma}} \,\mathrm{d}s

The acceleration sensitivity is:

\frac{\partial \ddot{m}_i(t)}{\partial \boldsymbol{\gamma}} = \mathbf{B}_g(u) + \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) \frac{\partial u}{\partial \boldsymbol{\gamma}}

This expression reveals two distinct contributions: - Direct effect: \mathbf{B}_g(u) captures the explicit linear dependence of the acceleration function on \boldsymbol{\gamma} - Indirect effect: \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) \frac{\partial u}{\partial \boldsymbol{\gamma}} accounts for the implicit dependence through the feedback of trajectory states

The index sensitivity is:

\frac{\partial u}{\partial \boldsymbol{\gamma}} = \boldsymbol{\beta}^{\top} \frac{\partial \mathbf{Z}_i(t)}{\partial \boldsymbol{\gamma}} = \boldsymbol{\beta}^{\top} \begin{bmatrix} \frac{\partial m_i(t)}{\partial \boldsymbol{\gamma}} \\ \frac{\partial \dot{m}_i(t)}{\partial \boldsymbol{\gamma}} \\ \mathbf{0} \\ 0 \end{bmatrix}

This dual dependence structure—explicit through the linear combination and implicit through the state feedback—is a key feature of the single-index acceleration model.

Computational Implementation via Augmented ODE Systems

The practical computation of these gradients necessitates solving augmented ordinary differential equation systems that simultaneously evolve both the primary state variables and their parameter sensitivities. This approach, known as the forward sensitivity method, extends the original three-dimensional state space to include sensitivity trajectories.

Augmented system for \boldsymbol{\theta} components:

\frac{d}{dt}\begin{bmatrix} \Lambda_i \\ m_i \\ \dot{m}_i \\ \partial\Lambda_{\eta,i} \\ \partial\Lambda_{\alpha,i} \\ \partial m_{i,\gamma} \\ \partial\dot{m}_{i,\gamma} \\ \partial\Lambda_{\gamma,i} \end{bmatrix} = \begin{bmatrix} \lambda_i(t|0) \\ \dot{m}_i(t) \\ g(\boldsymbol{\beta}^{\top}\mathbf{Z}_i(t)) \\ \mathbf{B}^{(\lambda)}(t) \lambda_i(t|0) \\ \mathbf{m}_i(t) \lambda_i(t|0) \\ \partial\dot{m}_{i,\gamma} \\ \mathbf{B}_g(u) + \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) \cdot \frac{\partial u}{\partial \boldsymbol{\gamma}} \\ \boldsymbol{\alpha}^{\top}\frac{\partial\mathbf{m}_i(t)}{\partial\boldsymbol{\gamma}} \lambda_i(t|0) \end{bmatrix}

Augmented system for \boldsymbol{\beta} sensitivities:

\frac{d}{dt}\begin{bmatrix} \Lambda_i \\ m_i \\ \dot{m}_i \\ \partial m_{i,\beta} \\ \partial\dot{m}_{i,\beta} \\ \partial\Lambda_{\beta,i} \end{bmatrix} = \begin{bmatrix} \lambda_i(t|0) \\ \dot{m}_i(t) \\ g(\boldsymbol{\beta}^{\top}\mathbf{Z}_i(t)) \\ \partial \dot{m}_{i,\beta} \\ \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) \cdot \frac{\partial u}{\partial\boldsymbol{\beta}} \\ \boldsymbol{\alpha}^{\top}\frac{\partial\mathbf{m}_i(t)}{\partial\boldsymbol{\beta}} \cdot \lambda_i(t|0) \end{bmatrix}

Here, \partial\Lambda_{\eta,i}, \partial\Lambda_{\alpha,i}, \partial\Lambda_{\gamma,i}, and \partial\Lambda_{\beta,i} denote the cumulative hazard sensitivities with respect to the corresponding parameter groups, while \frac{\partial u}{\partial\boldsymbol{\beta}} follows the recursive relationship defined previously. These augmented systems must be integrated from t=0 to t=T_i for each subject to obtain the complete sensitivity information required for gradient computation.

Adjoint Sensitivity Analysis

The adjoint method provides an alternative, more memory-efficient approach to compute the same state sensitivities, especially when the number of parameters is large.

Mathematical Foundation

Given the ODE system \frac{d\mathbf{s}}{dt} = f(t, \mathbf{s}; \boldsymbol{\psi}) with \mathbf{s}(0) = \mathbf{s}_0, we derive the adjoint sensitivity formula.

Since \mathbf{s}(t) satisfies the ODE, for any function \boldsymbol{\kappa}(t): \mathbf{s}(T) = \mathbf{s}(T) - \int_0^T \boldsymbol{\kappa}^{\top} \left[\frac{d\mathbf{s}}{dt} - f\right] dt

Differentiating with respect to \boldsymbol{\psi} and using integration by parts: \frac{\partial \mathbf{s}(T)}{\partial \boldsymbol{\psi}} = \int_0^T \boldsymbol{\kappa}^{\top} \frac{\partial f}{\partial \boldsymbol{\psi}} dt - \boldsymbol{\kappa}(T)^{\top} \frac{\partial \mathbf{s}(T)}{\partial \boldsymbol{\psi}} + \int_0^T \left[\frac{d\boldsymbol{\kappa}}{dt} + \left(\frac{\partial f}{\partial \mathbf{s}}\right)^{\top} \boldsymbol{\kappa}\right]^{\top} \frac{\partial \mathbf{s}}{\partial \boldsymbol{\psi}} dt

Define \tilde{\boldsymbol{\kappa}} = \boldsymbol{\kappa} + \mathbf{e}_k and choose it to satisfy: \frac{d\tilde{\boldsymbol{\kappa}}}{dt} = -\left(\frac{\partial f}{\partial \mathbf{s}}\right)^{\top} \tilde{\boldsymbol{\kappa}}, \quad \tilde{\boldsymbol{\kappa}}(T) = \mathbf{e}_k

This choice eliminates the \frac{\partial \mathbf{s}}{\partial \boldsymbol{\psi}} terms, yielding: \frac{\partial \mathbf{s}_k(T)}{\partial \boldsymbol{\psi}} = \int_0^T \tilde{\boldsymbol{\kappa}}^{\top} \frac{\partial f}{\partial \boldsymbol{\psi}}\bigg|_{\mathbf{s}} dt

where \mathbf{e}_k is the k-th unit vector (i.e., a vector with 1 in the k-th position and 0 elsewhere).

Application to JointODE

For the state vector \mathbf{s} = [\Lambda_i, m_i, \dot{m}_i]^{\top}, we need: 1. \frac{\partial m_i(T_{ij})}{\partial \boldsymbol{\psi}} for each observation time T_{ij} 2. \frac{\partial \Lambda_i(T_i)}{\partial \boldsymbol{\psi}} for the event time T_i

Adjoint System

The transposed Jacobian for the JointODE dynamics is: \left(\frac{\partial f}{\partial \mathbf{s}}\right)^{\top} = \begin{bmatrix} 0 & 0 & 0 \\ \alpha_0 \lambda_i(t|0) & 0 & g'(u) \beta_1 \\ \alpha_1 \lambda_i(t|0) & 1 & g'(u) \beta_2 \end{bmatrix}

where g'(u) = \boldsymbol{\gamma}^{\top}\mathbf{B}'_g(u) denotes the derivative of the acceleration function at u = \boldsymbol{\beta}^{\top}\mathbf{Z}_i(t).

This yields the adjoint differential equations (solved backward in time): \begin{aligned} \frac{d\tilde{\kappa}_1}{dt} &= 0 \\ \frac{d\tilde{\kappa}_2}{dt} &= -\alpha_0 \lambda_i(t|0) \tilde{\kappa}_1 - \tilde{\kappa}_3 \\ \frac{d\tilde{\kappa}_3}{dt} &= -\alpha_1 \lambda_i(t|0) \tilde{\kappa}_1 - g'(u) \beta_1 \tilde{\kappa}_2 - g'(u) \beta_2 \tilde{\kappa}_3 \end{aligned}

with terminal conditions:

  • For m_i(T_{ij}) sensitivity: \tilde{\boldsymbol{\kappa}}(T_{ij}) = [0, 1, 0]^{\top}
  • For \Lambda_i(T_i) sensitivity: \tilde{\boldsymbol{\kappa}}(T_i) = [1, 0, 0]^{\top}
Parameter Derivatives

The partial derivatives \frac{\partial f}{\partial \boldsymbol{\psi}}\bigg|_{\mathbf{s}} needed for the sensitivity integrals:

Trajectory parameters:

  • Single-index coefficients: \frac{\partial f}{\partial \boldsymbol{\beta}} = [0, 0, g'(u) \mathbf{Z}_i(t)]^{\top}
  • Acceleration basis coefficients: \frac{\partial f}{\partial \boldsymbol{\gamma}} = [0, 0, \mathbf{B}_g(u)]^{\top}

Survival parameters:

  • Baseline hazard coefficients: \frac{\partial f}{\partial \boldsymbol{\eta}} = [\mathbf{B}^{(\lambda)}(t) \lambda_i(t|0), 0, 0]^{\top}
  • Association parameters: \frac{\partial f}{\partial \boldsymbol{\alpha}} = [\mathbf{m}_i(t) \lambda_i(t|0), 0, 0]^{\top}
  • Baseline covariate effects: \frac{\partial f}{\partial \boldsymbol{\phi}} = [\mathbf{W}_i \lambda_i(t|0), 0, 0]^{\top}